Novel dicarbonyl and carbonylnitrosyl tris(μ -triazenide) dirhodium **complexes**

Neil G. Connelly, Owen D. Hayward, Phimphaka Klangsinsirikul and A. Guy Orpen

School of Chemistry, University of Bristol, Bristol, UK BS8 1TS

Received 31st October 2001, Accepted 4th December 2001 First published as an Advance Article on the web 17th December 2001

The first neutral, tribridged $[Rh_2]^3$ **⁺ triazenide complex,** $[(OC)Rh(\mu-RNNNR)_{3}Rh(CO)] (R = C_{6}H_{4}Me-p)$, reacts **with NO gas to give the novel nitrosyl [(OC)Rh(- RNNNR**)₃**Rh(NO)]** with an $[Rh_2]^{4+}$ core linked to NO⁻.

Both tetrabridged $[Rh_2(\mu-L)_4]$ (L = carboxylate, amidinate, *etc.*), containing the $[Rh_2]^{4+}$ core in a face-to-face structure,¹ and the less rigid dibridged $[Rh_2]^2$ ⁺ triazenide complex $[(OC)_2Rh$ ⁻ $(\mu$ -RNNNR)₂Rh(CO)₂] (R = C₆H₄Me-*p* throughout this paper)² are well established species with extensive redox-based chemistry linking the $[Rh_2]^{\bar{i}+}(z=2-6)$ cores by a series of sequential one-electron transfer reactions. We now report the synthesis and reactions of an unprecedented *tri*bridged $[Rh_2]$ ³⁺ complex, namely $[(OC)Rh(\mu-RNNNR), Rh(CO)],$ and its reaction with NO to give the first triazenide-bridged nitrosyl complex [(OC)Rh(µ-RNNNR)**3**Rh(NO)]. The combination of the redox-active Rh₂ core with the NO ligand, a potential 'electron sink', leads to a novel structure best described as containing NO^- bound to $[Rh_2]^{4+}$.

Mixing CH₂Cl₂ solutions of the neutral triazene complexes $[RhCl(CO)_2\{N(H)RNNR\}]$ and $[RhCl(\eta^2\text{-}coe)_2\{N(H)RNNR\}]$ {formed from the triazene RNNNHR and [{Rh(µ-Cl)(CO)**2**}**2**] or $[\{Rh(\mu\text{-}Cl)(\eta^2\text{-}coe)_2\}_2]$ (coe = cyclooctene) respectively} for 25 min, adding one further equivalent of triazene and then treating the mixture with the base $NEt₃$ gave a red–brown mixture. Column chromatography on alumina gave a red band $\{a \text{ mixture of } [(OC)_2Rh(\mu-RNNNR)_2Rh(CO)_2] \text{ and a second} \}$ compound, possibly [(OC)(η**²** -coe)Rh(µ-RNNNR)**2**Rh(CO)**2**]} and a green band from which [(OC)Rh(µ-RNNNR)**3**Rh(CO)] **1** was isolated as dark green crystals. †

The molecular structure of 1^{\dagger} has three triazenide bridges symmetrically disposed about the (OC)Rh–Rh(CO) unit; the eclipsed arrangement of the two carbonyls is consistent with the observation of one strong and one medium weak IR carbonyl band, separated by 37 cm^{-1} (Table 1). For each metal atom, the mutually *trans* triazenides show an average Rh–N distance of 2.063 Å; the Rh–N distances for the third triazenide are longer $[Rh(1)-N(4) = Rh(2)-N(6) = 2.087 \text{ Å}]$ as a result of the greater *trans* influence of CO. Compared with the structures of *di*bridged $[Rh_2]^3$ ⁺ complexes {*e.g.* $[(QC)(Ph_3P)Rh(\mu RNNNR$ ₂Rh(CO)(PPh₃)]⁺, Rh–Rh = 2.698 Å³}, the Rh–Rh distance of **1** (2.542 Å) is much shorter, presumably as a result of the constraints of the tribridged framework.

The cyclic voltammogram (CV) of 1 in CH_2Cl_2 at a platinum electrode shows two reversible oxidation waves (0.65 and 1.43 V *vs.* SCE) and one reversible reduction wave (at -0.72 V) corresponding to the formation of the $[Rh_2]^{4+}$ monocation, the $[Rh_2]^{5+}$ dication and the $[Rh_2]^{2+}$ anion $[(OC)Rh(\mu-RNNNR)_{3-}$ Rh(CO)]⁻ respectively. A comparison with the CV data for dibridged [Rh₂]^{*z*} triazenide complexes shows the higher oxidation levels to be stabilised by the lower overall charge of the tribridged complexes {compare the $[Rh_1]$ ^{3+/4+} couples for **1** (0.65 V) and $[(OC)_2Rh(\mu\text{-RNNNR})_2Rh(CO)_2]$ (1.42 V⁴).

The room temperature ESR spectrum of paramagnetic **1** in toluene consists of a broad line $(g_{\text{iso}} \text{ ca. } 2.11)$ but the anisotropic spectrum (at 160 K) shows three well separated features $(g_1 = 2.215, g_2 = 2.117, g_3 = 2.016, g_{ave} = 2.116)$ with that at high field a particularly well defined 1 : 2 : 1 triplet due to hyperfine coupling to two equivalent Rh nuclei $[A_1(^{103}Rh) = 6, A_2(^{103}Rh) =$ 6, A_3 ⁽¹⁰³Rh) = 17.3 × 10⁻⁴ cm⁻¹]. The anisotropic spectrum is qualitatively similar to those of other $[Rh_2]$ ³⁺ complexes for which a correlation between Δg ₃/ $\Delta \langle g \rangle$ (Δg is the difference between the appropriate *g*-value and that of the free electron) and β (half the angle between the two coordination planes of the $[Rh_2]^{3+}$ unit) is observed.³ Applying this correlation to the ESR spectroscopic data for **1** gives a predicted value of β (5–10°) in good agreement with that determined by X-ray crystallography (6).

Unlike cationic $[Rh_2]^{3+}$ complexes such as $[(OC)(Ph_3P)Rh$ - $(\mu$ -RNNNR)₂Rh(CO)(PPh₃)]⁺, the neutral paramagnetic complex **1** undergoes a 'radical coupling' reaction with NO (and subsequent CO loss). Thus, the dropwise addition of a dilute $CH₂Cl₂$ solution of NO gas to 1 in the same solvent gave a brown–green solution from which dark brown crystals of $[(CO)Rh(\mu-RNNNR),Rh(NO)]$ 2 were isolated in good yield.

The X-ray structure of $[(OC)Rh(\mu-RNNNR),Rh(NO)]$ 2 (Fig. 1) ‡ is very similar to that of **1**, with three triazenide bridges, one CO ligand on one Rh atom and one NO ligand on the other. The mutually *trans* triazenide Rh–N bonds (average 2.053 Å) are slightly shorter than those of **1**. The Rh–N bond distances for the third bridging ligand are different; Rh(1)– N(4), *trans* to CO (2.086 Å), is similar to that of **1** whereas Rh(2)–N(6), *trans* to NO (2.123 Å), is significantly longer, consistent with the *trans* labilising effect of the nitrosyl ligand.**⁵**

The Rh–Rh distance of **2** (2.518 Å) is slightly shorter than that of **1**. Thus, a formal description of **2** as containing a 'bent'

a In CH₂Cl₂, strong absorptions unless otherwise stated, m = medium, w = weak, br = broad. *b* In CH₂Cl₂, at a platinum electrode, with 0.1 mol dm⁻³ [NBu₄][PF₆] as supporting electrolyte. For an irreversible (I) process, the peak potential, $(E_p)_{\alpha}$ or $(E_p)_{\text{red}}$, is given at a scan rate of 200 mV s⁻¹. All potentials are relative to the saturated calomel electrode, SCE. Under the experimental conditions, E^o for the one-electron oxidations of $[Fe(\eta-C_5Me_5)_2]$ (calibrant for **1**) and $[Fe(\eta-C_5H_5)_2]$ (calibrant for **2**, **4** and **5**) is -0.08 and 0.47 V respectively. *c* v(NO).

Fig. 1 Structure of [(OC)Rh(µ-RNNNR)**3**Rh(NO)] **2** (hydrogen atoms omitted for clarity). Important bond lengths and angles: Rh(1)– $Rh(2) = 2.518(1), Rh(1) - N(3) = 2.053(4), Rh(1) - N(4) = 2.086(4),$ $Rh(1)-N(7) = 2.051(4), Rh(2)-N(1) = 2.045(4), Rh(2)-N(6) = 2.123(4),$ $Rh(2)-N(9) = 2.064(4), Rh(1)-C(1) = 1.843(6), Rh(2)-N(10) =$ 1.803(4), N(10)–O(2) = 1.166(5) Å; Rh(1)–C(1)–O(1) = 175.8(5), $Rh(2)-N(10)-O(2) = 156.7(4)°$. The structure of $[(OC)Rh(\mu-$ RNNNR)**3**Rh(CO)] **1** is similar to that of **2**. Important bond lengths and angles: $Rh(1) - Rh(2) = 2.542(1), Rh(1) - N(3) = 2.068(2), Rh(1) N(4) = 2.087(2), Rh(1)-N(7) = 2.057(2), Rh(2)-N(1) = 2.057(2),$ $Rh(2)-N(6) = 2.087(2), Rh(2)-N(9) = 2.068(2), Rh(1)-C(1) = 1.857(2),$ $Rh(2)-C(2) = 1.857(2)$ Å; $Rh(1)-C(1)-O(1) = 176.8(2)$, $Rh(2)-C(2)$ $O(2) = 176.8(2)$ °.

NO⁻ group attached to a $[Rh_2]^{4+}$ core seems more appropriate than linear 'NO⁺' attached to $[Rh_2]$ ²⁺ (where a longer Rh–Rh distance might be expected). However, the Rh–N–O angle of **2** (156.7°) is intermediate between the values usually associated with bent $(120-140)$ and linear $(160-180^\circ)$ nitrosyls.⁶

The observation of $v(NO)$ at 1705 cm⁻¹ is also ambiguous given that $v(NO⁺)$ usually occurs in the range 1950–1600 cm⁻¹ and $v(NO^-)$ in the range 1720–1520 cm⁻¹.⁶ However, other spectrochemical and electrochemical evidence supports the NO-/[Rh**2**] **⁴** description. First, the FAB mass spectrum of **2** shows the loss of NO before CO from the parent ion; the nitrosyl ligand, when acting as a strong π-acceptor (*i.e.* formally as $NO⁺$), is usually lost after CO. Second, compound 2 is formed *via* an intermediate, **3**, with an IR spectrum $[v(CO)] =$ 2078 and 2041 cm⁻¹, $v(NO) = 1711$ cm⁻¹] very similar to that of [(OC)Rh(µ-RNNNR)**3**Rh(CO)I] **4** (see below). Assuming, by analogy with I⁻ in 4, an NO⁻ ligand in [(OC)Rh- $(\mu$ -RNNNR)₃Rh(CO)(NO)] **3**, the small change in ν (NO) when **3** loses CO leads to the same assignment for **2**. Finally, the CV of **2** shows an irreversible oxidation wave at 0.99 V and a reversible reduction wave at -0.82 V. If the nitrosyl group is regarded as NO^+ , complex 2 would contain an $[Rh_2]^{2+}$ core and the waves at 0.99 and -0.82 V would be due to the $[Rh_2]^{2^{1/3+}}$ and $[Rh_2]^{1/2+}$ couples respectively. As there are no examples known of the $[Rh_2]^+$ core, voltammetry also suggests that **2** is a $[Rh_2]^{4+}$ complex of NO⁻.

Complexes with the $[Rh_2]^{4+}$ core result when 1 couples with halogens $(X_2$, as a source of X^{*}). Thus, addition of solid I_2 to **1** in CH**2**Cl**2** gave a dark green solution from which fine green needles of $[(OC)Rh(\mu-RNNNR),Rh(CO)]]$ 4 were isolated; a similar reaction with Br_2 in CH_2Cl_2 gave dark green microcrystals of $[(OC)Rh(\mu-RNNNR),Rh(CO)Br]$ 5.

The CV of **4** shows an irreversible oxidation wave at 1.25 V, and an irreversible reduction wave at $ca. -0.42$ V accompanied by a reversible product wave centred at -0.74 V. The similarity in potential of the product wave to that for the formation of $[(OC)Rh(\mu-RNNNR)_{3}Rh(CO)]^{-}$ 1⁻ from 1 ($E^{\circ} = -0.72$ V) suggests that one-electron reduction of **4** to [(OC)Rh- $(\mu$ -RNNNR)₃Rh(CO)I]⁻ 4⁻ (at -0.42 V) is followed by iodide loss to give **1** (which is then reversibly reduced to **1**-).

Complex **5** can also be prepared by adding $[Fe(\eta - C_5H_5)$ - $(\eta$ -C₅H₄COMe)][BF₄] (E° = 0.74 V) to 1 in the presence of [PPh**4**]Br in CH**2**Cl**²** *i.e.* by a reaction involving one-electron oxidation. The CV of 1 in the presence of PPh₃ also provides evidence for oxidative activation *via* **1**. Thus, the first oxidation wave of **1** becomes irreversible and reversible product waves appear at 0.38 (oxidation) and -1.12 (reduction) V, consistent with the formation of $[(OC)Rh(\mu-RNNNR),Rh(PPh_3)]^+$.

Axial coordination to the dibridged $[Rh_2]^2$ core of triazenide complexes is enhanced as *z* is increased.**⁷** The stabilisation of the higher core oxidation levels $[Rh_2]^{z+}$ in the novel tribridged complexes described above should therefore provide access to further species suitable for exploitation in the systematic construction of dirhodium-based supramolecular assemblies.**⁸**

We thank the Royal Thai Government and the EPSRC for Studentships (to P. K. and O. D. H. respectively).

Notes and references

† All new complexes had satisfactory elemental analyses (C, H and N). ‡ Crystal data: [(OC)Rh(µ-RNNNR)**3**Rh(CO)] **1** (from CH**2**Cl**2**– *n*-heptane): $C_{44}H_{42}N_9O_2Rh_2$, $M = 934.69$, monoclinic, space group *C*2/*c* (no. 15), $a = 12.225(2)$, $b = 23.801(4)$, $c = 14.292(3)$ Å, $\beta = 91.34(2)^{\circ}$, $V = 4157.4(13)$ Å³, $Z = 4$, $T = 173(2)$ K, $\mu = 0.842$ mm⁻¹, $R1 = 0.024$. Molecules of **1** lie at sites of C_2 symmetry.

 $[(OC)Rh(\mu-RNNNR)_{3}Rh(\overline{NO})] \cdot CH_{2}Cl_{2}$ **2** $\cdot CH_{2}Cl_{2}$ (from $CH_{2}Cl_{2}$ propan-2-ol): $C_{44}H_{44}N_{10}O_2Cl_2Rh_2$, $M = 1021.61$, monoclinic, space group *C*2/*c* (no. 15), $a = 19.293(3)$, $b = 18.266(4)$, $c = 26.178(3)$ Å, $\beta = 102.56(1)$ °, $V = 9004(3)$ Å³, $Z = 8$, $T = 173(2)$ K, $\mu = 0.900$ mm ⁻ 1 , *R*1 = 0.0398. CCDC reference numbers 173464 and 173465. See http://www.rsc.org/suppdata/dt/b1/b109972h/ for crystallographic data in CIF or other electronic format.

- 1 T. R. Felthouse, *Prog. Inorg. Chem.*, 1982, **29**, 73; L. A. Oro, M. A. Ciriano, J. J. Perez-Torrente and B. E. Villarroya, *Coord. Chem. Rev.*, 1999, **193–195**, 941.
- 2 N. G. Connelly, G. Garcia, M. Gilbert and J. S. Stirling, *J. Chem. Soc., Dalton Trans.*, 1987, 1403; N. G. Connelly and G. Garcia, *J. Chem. Soc., Dalton Trans.*, 1987, 2737; N. G. Connelly, P. M. Hopkins, A. G. Orpen, G. M. Rosair and F. Viguri, *J. Chem. Soc., Dalton Trans.*, 1992, 2907; N. G. Connelly, T. Einig, G. Garcia Herbosa, P. M. Hopkins, C. Mealli, A. G. Orpen, G. M. Rosair and F. Viguri, *J. Chem. Soc., Dalton Trans.*, 1994, 2025.
- 3 D. C. Boyd, N. G. Connelly, G. Garcia Herbosa, M. G. Hill, K. R. Mann, C. Mealli, A. G. Orpen, K. E. Richardson and P. H. Rieger, *Inorg. Chem.*, 1994, **33**, 960.
- 4 N. G. Connelly, P. R. G. Davis, E. E. Harry, P. Klangsinsirikul and M. Venter, *J. Chem. Soc., Dalton Trans.*, 2000, 2273.
- 5 B. J. Coe and S. J. Glenwright, *Coord. Chem. Rev.*, 2000, **203**, 5.
- 6 G. B. Richter-Addo and P. Legzdins, *Metal Nitrosyls*, Oxford University Press, Oxford, 1992; B. F. G. Johnson, B. L. Haymore and J. R. Dilworth, in *Comprehensive Coordination Chemistry*, ed. G. Wilkinson, vol. 2, ch. 13.3, pp. 101–107, Pergamon Press, Oxford, 1987.
- 7 T. Brauns, C. Carriedo, J. S. Cockayne, N. G. Connelly, G. Garcia Herbosa and A. G. Orpen, *J. Chem. Soc., Dalton Trans.*, 1989, 2049.
- 8 F. A. Cotton, C. Lin and C. A. Murillo, *J. Chem. Soc., Dalton Trans.*, 2001, 499.